Groundbreaking Knowledge Transfer Partnership solves optical contamination issue
Cambridge Vacuum Engineering (CVE) – the power beam welding specialists – today announced the successful completion of a Knowledge Transfer Partnership (KTP)* with Cranfield University that will increase welding options available to engineers worldwide. Together, the two organisations have solved the undesirable optics contamination phenomenon associated with Laser in Vacuum welding, paving the way for full scale industrial exploitation of the technology.
The conclusion of the KTP is set to yield tangible benefits for companies that want to achieve deeper penetration welds, while also improving weld quality, reducing oxidation, and minimising the time needed for part cleaning, post welding.
Laser in Vacuum welding is a relatively new joining technique that can be used to tackle some of the most demanding welding tasks. The technique can achieve two to three times the depth of weld compared to conventional laser welding methods. However, to date, the issue of optics contamination** has hindered its widespread adoption across industry.
With a shared vision to drive forward innovation, CVE and Cranfield University joined forces to research innovative solutions to this persistent issue and enable the seamless integration of Laser in Vacuum welding into various industrial applications. Over the last two years, using Innovate UK funding, the teams set up test systems at both CVE and Cranfield to study different aspects of the Laser in Vacuum process and trial various concepts and solutions. Experiments on these systems provided the team with a robust data set on various phenomena associated with optical contamination, as well as the secondary effects of the potential identified solutions. This data was then used to develop a unique optics protection system – using a first principles, physics-based approach – that operates effectively with very low levels of particulate generation. Several trials were conducted with customers, providing further assurances about the capabilities of Laser in Vacuum welding, and validating weld quality in a range of applications, materials and joint configurations.
The project has subsequently been awarded the highest grade of ‘Outstanding’ by Innovate UK and Cambridge Vacuum Engineering is now building Laser in Vacuum welding machines featuring the technology for its customers in industry.
Commenting, KTP Project Lead and Head Laser Development Engineer at CVE, Max Nentwich, said: “This project is a significant milestone in the commercialisation of Laser in Vacuum welding. By addressing the optics contamination issue, we can now unlock the full potential of this form of welding – enabling it to reach full industrial maturity. As a team, we are incredibly proud of this breakthrough and grateful to Innovate UK and Cranfield for their support. On a personal level, as a recent graduate, I’m delighted to have led such a meaningful project. It was a privilege to conduct research that will have immediate implications for industry and help deliver enhanced levels of productivity, efficiency, and quality for end users.”
CVE’s optical protection system ensures cleanliness levels of welded parts comparable with electron beam welding, while guaranteeing a long laser coupling-in window life. The low-cost consumable windows last for up to three hours of welding at a low power (3kW) with no appreciable weld degradation.
Steve Horrex, Sales Director at CVE, said: “Congratulations to Max and the team at Cranfield for completing this project with such exceptional results. It’s rare for a recent graduate to be put in charge of such a large KTP, but we knew from the start that Max was the right project lead. To be awarded such an impressive grade by Innovate UK validates the future impact of this project and we look forward to taking the results to market to deliver commercial benefits across the sectors we work in.”
Dr. Wojciech Suder, Senior Lecturer at Cranfield University, said: “Laser welding in vacuum can overcome many limitations of atmospheric laser welding, opening a myriad of new applications. Working with Max and the CVE team enabled us to put the required expertise together quickly and develop this technology very efficiently, making real impact. Well done to the team for converting a lab idea into a commercial system is in just over two years. I look forward to seeing this technology revolutionizing thick section and specialized welding applications.
Jody Chatterjee, Knowledge Transfer Advisor at Innovate UK (KTN), said: “This was a highly innovative and productive KTP project between CVE and Cranfield University, where the knowledge transfer was project managed and the outcomes delivered by Max, an excellent Associate. There are over 800 KTP projects throughout the UK each year with companies, charities, non-profits, and the public sector, across a range of industries and sectors covering STEM, management, and other topics.’’
Laser in Vacuum welding complements electron beam and standard laser welding techniques, with each approach possessing different strengths and weaknesses. Offering all three types of welding, Cambridge Vacuum Engineering can take a technology agnostic approach, providing customers with bespoke solutions optimised to meet different application needs and engineering challenges. Laser in Vacuum welding is most suited to projects where higher penetration welds are required or gas-sensitive materials are used. In these scenarios, standard laser welding can struggle to achieve the right results. Many of the process variables influencing weld quality associated with standard laser welding, such as shielding gas composition, nozzle design, and melt pool instabilities, are eliminated using a vacuum.
CVE is headquartered in Waterbeach and has regional offices in Beijing, China and Massachusetts, USA, as well as a global network of agents. For more information about CVE go to www.camvaceng.com
-ends-
About Cambridge Vacuum Engineering:
Aquasium Technology Ltd, trading as Cambridge Vacuum Engineering (“CVE”), design and build process solutions and has more than 60 years’ experience manufacturing electron beam (EB) systems in a range of industrial sectors including aerospace, nuclear, automotive, oil and gas, and sensors. The company exports around 95% of its systems with primary markets in USA, China, India, and Europe. CVE’s range of EB welding equipment includes systems ranging from 50-200kV with beam powers up to 100kW. CVE has a team of designers and engineers to enable them to design and build bespoke manufacturing equipment to meet their customer’s requirements. https://camvaceng.com/
About Cranfield University
Cranfield is a specialist postgraduate university that is a global leader for education and transformational research in technology and management. The most recent Research Excellence Framework results demonstrate Cranfield University’s excellence with 88% of research rated as world-leading or internationally excellent. We are focused on the specialist themes of aerospace, defence and security, energy and sustainability, environment and agrifood, manufacturing and materials, transport systems, and water. Cranfield School of Management is a world leader in management education and research. Cranfield is a six-time winner of the prestigious Queen’s Anniversary Prize, the only national honour given to educational institutions for work carried out in the public interest. For more information, go to: https://www.cranfield.ac.uk/
About Innovate UK
Innovate UK is the UK’s national innovation agency. It drives productivity and economic growth by supporting businesses to develop and realise the potential of new ideas, including those from the UK’s world-class research base. They connect businesses to the partners, customers and investors that can help them turn these ideas into commercially successful products and services, and business growth. For more information go to: https://www.ukri.org/councils/innovate-uk/
Footnotes:
(*) Since 1975, Knowledge Transfer Partnerships (KTPs) have been helping businesses innovate for growth. They are unique collaborative partnerships creating positive impact and driving innovation. KTPs connect forward thinking businesses with the UK’s world class knowledge bases to deliver a business led innovation projects. KTPs are developed to solve a specific, strategic innovation challenge faced by the business partner.
(**) During laser welding, the creation of vapour and particulate (soot) can prove problematic. With other forms of welding, operators manage the build-up of vapour and particulate by using gas protection systems. However, with laser in vacuum welding, the use of such system can negate some of the advantages of the vacuum – turning process emissions from welding into a fine particulate that coats the inside of the welding chamber and the workpiece. In laser in vacuum welding, proper soot extraction is a challenge due to the lack of atmosphere. The deposited powder is harmless in small quantities but begins to present a more significant risk when it builds into a thick layer. This can happen quickly when the machine is in heavy use. Airborne metal oxide powders can be toxic and present an explosion and fire risk. These risks are mitigated, but not avoided entirely, with regular cleaning. This conflict with health and safety requirements, as well as cleanliness standards, is unacceptable for many industries.